首页> 外文OA文献 >Training Design and Channel Estimation in Uplink Cloud Radio Access Networks
【2h】

Training Design and Channel Estimation in Uplink Cloud Radio Access Networks

机译:上行云无线接入的训练设计和信道估计   网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To decrease the training overhead and improve the channel estimation accuracyin uplink cloud radio access networks (C-RANs), a superimposed-segment trainingdesign is proposed. The core idea of the proposal is that each mobile stationsuperimposes a periodic training sequence on the data signal, and each remoteradio heads prepends a separate pilot to the received signal before forwardingit to the centralized base band unit pool. Moreover, a complex-exponentialbasis-expansion-model based channel estimation algorithm to maximize aposteriori probability is developed, where the basis-expansion-modelcoefficients of access links (ALs) and the channel fading of wireless backhaullinks are first obtained, after which the time-domain channel samples of ALsare restored in terms of maximizing the average effective signal-to-noise ratio(AESNR). Simulation results show that the proposed channel estimation algorithmcan effectively decrease the estimation mean square error and increase theAESNR in C-RANs, thus significantly outperforming the existing solutions.
机译:为了减少训练开销并提高上行链路云无线接入网络(C-RAN)中的信道估计精度,提出了一种叠加段训练设计。该建议的核心思想是,每个移动台在数据信号上叠加一个周期性的训练序列,并且每个远程无线电头在将其转发到集中式基带单元池之前,对接收到的信号添加一个单独的导频。此外,开发了一种基于复杂指数基础扩展模型的信道估计算法,以最大化后验概率,其中首先获得接入链路(AL)的基础扩展模型系数和无线回程链路的信道衰落,然后在时间上根据最大化平均有效信噪比(AESNR)来恢复AL的域通道样本。仿真结果表明,所提出的信道估计算法可以有效地减小估计均方误差,并提高C-RAN中的AESNR,从而明显优于现有的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号